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Abstract

More robust developments of schemes for hyperbolic systems, that avoid dependence upon a characteristic decompo-
sition have been achieved by employing schemes that are based on a Rusanov flux. Such schemes permit the construction
of higher order approximations without recourse to characteristic decomposition. This is achieved by using the maximum
eigenvalue of the hyperbolic system within the definition of the numerical flux. In recent literature the Rusanov flux has
been embedded in a local Lax–Friedrichs flux. The current literature on these schemes only appears to indicate success in
this regard, with no investigation of the effect of the additional numerical diffusion that is inherent in such formulations.

In this paper the foundation for a new scheme is proposed which relies on the detection of the dominant wave in the
system. This scheme is designed to permit the construction of lower and higher order approximations without recourse to
characteristic decomposition while avoiding the excessive numerical diffusion that is inherent in the Rusanov and local
Lax–Friedrichs fluxes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many locally conservative schemes have been developed for systems of hyperbolic conservation laws [1].
The most successful high resolution schemes, in terms of actual front resolution, depend upon a characteristic
decomposition of the system. The decomposition leads to optimal upwind schemes where upwind directions
can be resolved according to the characteristic wave components and upwind approximations applied with
minimum dissipation. Roe’s approximate Riemann solver [2] is one of the most popular schemes of this type.
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The method has excellent shock capturing capabilities, while the method requires an entropy fix to disperse
expansion shocks, it remains one of the most efficient decomposition schemes when compared to rival
formulations.

However, the discovery of a scheme that can provide front resolution that is comparable with that of the
best upwind schemes, while avoiding the need for characteristic decomposition continues to present a major
challenge in this area, e.g. [3].

The standard approach to this problem, particularly for steady-state problems, involves employing schemes
that are essentially ‘‘central difference’’ in character, e.g. [5], together with some form of artificial dissipation,
e.g. [4,6–8]. Earlier finite element schemes were also developed along these lines, e.g. [9].

More robust developments of schemes for systems, that avoid dependence upon a characteristic decom-
position have been achieved by employing some form of a Lax–Friedrichs flux [12] or Rusanov [18] based
flux, e.g. [10,11,3] and more recently [13–15]. In these schemes, the dependency upon the characteristic
components is removed by using the modulus of maximum eigenvalue of the hyperbolic system within
the definition of the numerical flux. Such schemes then permit the construction of higher order approxima-
tions without recourse to characteristic decomposition. The more recent schemes [13–15] employ a modified
form of Rusanov flux that depends on the maximum eigenvalue of the hyperbolic system within a local (or
global) Lax–Friedrichs flux (LLF). The recent literature on these schemes only appears to indicate success in
this regard, with little apparent investigation of the effect of the additional numerical diffusion that is inher-
ent in such formulations.

In this paper the foundation for a new scheme is proposed which relies on the detection of the dominant
wave in the system [16,17]. This scheme is designed to permit the construction of lower and higher order
approximations without recourse to characteristic decomposition while avoiding the excessive numerical dif-
fusion that is inherent within the Rusanov and local Lax–Friedrichs based flux approximations.

This paper describes the motivation and derivation of the dominant wave capturing technique. The formu-
lation ensures that local conservation is maintained and is developed within a general finite volume framework
where a comparison with Rusanov and the Lax–Friedrichs flux is also presented. Low order and higher order
versions of the method are presented on structured and unstructured grids.

The application includes the Euler equations of compressible flow. Comparisons between the new method
and the Rusanov and LLF schemes reveal clear weaknesses of the Rusanov and LLF based formulations.
Some classical flow problems are presented where the Rusanov and LLF schemes fail to detect discontinuities
that are known to be present in the physical solution. In contrast, the new dominant wave scheme is able to
capture the discontinuities while using exactly the same grids and equivalent levels of accuracy in terms of
polynomial approximation. The results presented demonstrate the benefits of the dominant wave formulation,
for both low order and higher order approximations on structured and unstructured grids.

Finally, it is noted that the dominant wave formulation offers the benefits of being directly applicable to
other systems of hyperbolic conservation laws without requiring a characteristic decomposition.

2. Flow equations

The schemes presented here are applicable to hyperbolic systems of the form
Z
X

ou

ot
dV þ

Z
X

oFðuÞ
ox
þ oGðuÞ

oy
dV ¼ 0 ð1Þ
where the integral is over volume X. The Euler equations of compressible flow are considered in this paper
with:
u ¼ ðq; qu; qv;EÞT

FðuÞ ¼ ðqu; qu2 þ p; quv; uðE þ pÞÞT

GðuÞ ¼ ðqv; quv; qv2 þ p; vðE þ pÞÞT
ð2Þ
Here q, p and E are the density, pressure and energy per unit volume of an ideal gas q = (u,v) the Cartesian
components of velocity and
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E ¼ q
1

2
q2 þ p=qðc� 1Þ

� �
ð3Þ
c being the ratio of specific heat capacities, q2 = u2 + v2 and sound speed a ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
.

2.1. Boundary conditions

For the initial value problem (IVP) field data is prescribed. For initial boundary value problems (IBVP),
considered here in two-dimensions, an initial flow field is prescribed together with boundary values which
are assigned according to the number of inward pointing characteristics, e.g. [1] for further discussion. Zero
normal flow is imposed on solid walls. For the Euler equations, on a solid wall the Euler flux reduces to being
a function of pressure.
3. Approximate Riemann solvers with upwinding

3.1. Scalar equation

First we consider the one-dimensional scalar equation
ou
ot
þ oF ðuÞ

ox
¼ 0 ð4Þ
which is to be solved over the domain [a,b] with initial data u(x,0) = u0(x). We define the numerical schemes
for integrating Eq. (4) on a computational grid in one spatial dimension with discrete nodes xi = iDx and time
at level n where tn = nDt. The standard first order explicit upwind scheme can be written as
unþ1
i ¼ un

i �
Dt
Dx

f n
iþ1

2
� f n

i�1
2

� �
ð5Þ
where forward Euler time integration is used and the approximate numerical flux is defined by
f n
iþ1

2
¼ 1

2
F ðun

iþ1Þ þ F ðun
i Þ � kiþ1

2

��� ���ðun
iþ1 � un

i Þ
� �

ð6Þ
and
kiþ1
2
¼
ðF ðun

iþ1Þ � F ðun
i ÞÞ=ðun

iþ1 � un
i Þ jðun

iþ1 � un
i Þj > �

oF ðuÞ=ou jðun
iþ1 � un

i Þj 6 �

�
ð7Þ
where � is an appropriate tolerance to prevent a zero divide. This definition of wave speed ensures that shocks
are captured with precision for any finite jump in u, with kiþ1

2
assuming the Rankine–Hugoniot shock speed

across a mesh interval. In this form the first order spatial scheme appears as a central scheme comprised of
a central difference in flux together with a central difference of a diffusion term. The scheme can be seen in
its original upwind form by noting that for a positive wave speed the flux uses data to the left and reduces
to fiþ1

2
¼ F ðun

i Þ, otherwise fiþ1
2
¼ F ðun

iþ1Þ and the flux uses data to the right. While the definition of Eqs.

(5)–(7) does not require any explicit sign dependence in the scheme, the upwind directions are clearly detected.
This explicit scheme is the most fundamental scheme for scalar conservation laws in one dimension and is sta-
ble and monotonicity preserving subject to a maximum CFL condition of unity. This scheme also requires an
entropy fix to disperse expansion shocks [19].
3.2. Systems

We now turn to systems of hyperbolic conservation laws of the form
ou

ot
þ oFðuÞ

ox
¼ 0 ð8Þ
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defined over the domain interval [a,b] subject to initial data u(x,0) = u0(x). The vector u has N components and
the system Jacobian matrix A = oF/ou has N real eigenvalues. In order to apply upwind schemes of the type
described above to a system of the form given in Eq. (1) the system is first decomposed into characteristic form
via the transformation
Du ¼ RDv ð9Þ

where R is the matrix of right eigenvectors of the system Jacobian matrix A, the matrix of eigenvalues K is
defined via
AR ¼ RK ð10Þ

and Du, Dv represent the respective conservative and characteristic variable increments. The upwind scheme is
in effect applied to each characteristic wave component and the discrete system is recomposed into conserva-
tion form. The first order scheme for a system is written as
unþ1
i ¼ un

i �
Dt
Dx

fn
iþ1

2
� fn

i�1
2

� �
ð11Þ
where the approximate flux is defined by
fn
iþ1

2
¼ 1

2
F un

iþ1

	 

þ F un

i

	 

� R Kiþ1

2

��� ���R�1 un
iþ1 � un

i

	 
� �
ð12Þ
and the definition of the discrete eigenvalues kiþ1
2

now require an appropriate generalization of Eq. (7) such
that conservation together with the exact shock speed are maintained. This is the basis of the Roe scheme
[2], however, as in the scalar case a (non-linear) componentwise entropy fix is required to disperse expansion
shocks [19]. The CFL condition now applies with respect to the maximum eigenvalue of the system.
4. Approximate Riemann solvers without upwinding in one dimension

The appearance of the matrix of eigenvectors R in the system flux approximation of Eqs. (11) and (12) is a
consequence of upwinding on each characteristic component. This scheme has an optimal diffusive operator in
terms of numerical diffusion (though relatively complicated by the entropy fix) provided the shock jump cri-
teria can be satisfied for the system in hand. If the matrix of eigenvalues is proportional to the unit matrix
(equal eigenvalues) then the dependency of the discrete flux on the matrix of eigenvectors is removed leaving
a much simpler diffusion coefficient which is independent of characteristic decomposition.

The upwind scheme can be simplified in this way without appearing to violate the crucial monotonicity pre-
serving property of the scheme, subject to the CFL condition, by replacing the diagonal matrix of absolute

eigenvalues |K| evaluated at iþ 1
2

with the matrix jKRUSj ¼ kRUS iþ1
2

��� ���I where
kRUS iþ1
2

��� ��� ¼ max
j

kj
iþ1

2

��� ���
� �

ð13Þ
which depends on the maximum eigenvalue of the system and leads to the Rusanov flux [18]
fn
iþ1

2
¼ 1

2
F un

iþ1

	 

þ F un

i

	 

� jKRUSj un

iþ1 � un
i

	 
	 

ð14Þ
where it is understood that |KRUS| is defined at the interface iþ 1
2
, here the Roe average is used. The scheme

proposed in [13] embeds the Rusanov flux within the LLF flux yielding an LLF flux for systems defined by:
fn
iþ1

2
¼ 1

2
ðFðun

iþ1Þ þ Fðun
i Þ � jKLLFjðun

iþ1 � un
i ÞÞ

kLLFiþ1
2

��� ��� ¼ max
xL;xR

max
j

kj
iþ1

2

��� ���
� � ð15Þ
where jKLLFj ¼ kLLFiþ1
2

��� ���I . The system LLF flux therefore depends on the maximum eigenvalue of the system

over the local interval [xi,xi+1]. A global version of the latter scheme for systems can be defined with flux:
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fn
iþ1

2
¼ 1

2
F un

iþ1

	 

þ F un

i

	 

� jKGLFj un

iþ1 � un
i

	 
	 


kGLFiþ1
2

��� ��� ¼ max
xa;xb

maxj kj
iþ1

2

��� ���� � ð16Þ
where jKGLFj ¼ kGLFiþ1
2

��� ���I and the system GLF flux depends on the maximum eigenvalue of the system over the

domain [xa,xb], e.g. [15,14].
Note that the schemes are locally conservative. Extension to higher order accuracy is discussed in Section 7.

Since all eigenvalues in the diffusion component of upwind flux are replaced by their maximum modulus to
obtain the Rusanov flux, it follows that the price to be paid for this simplification is extra numerical diffusion.
Since the LLF flux uses a further maximum over the interval (compared to Rusanov), it follows that the
entropy satisfying LLF scheme will have diffusion greater than or equal to that of the Rusanov scheme. More-
over the GLF scheme’s dependence on the maximum over the domain will yield diffusion greater than or equal
to that of LLF. There is little discussion in the literature on the effect of the additional diffusion on the (low or
higher order) results in terms of dissipation. There is a report that this scheme can be accompanied by further
oscillations unless the global maximum eigenvalue over the domain is employed [15]. The following section
presents an alternative non-upwind scheme which is quite different to the above three schemes, and relies
on detecting the dominant wave of the system.

5. Dominant wave of a system of hyperbolic conservation laws

The notion of a dominant wave arises when attempting to describe a system of hyperbolic conservation
laws with just a single best characteristic [16]. In order to illustrate the construction, it is necessary to introduce
the mobile operator that measures total rate of change in time along the characteristic as
Du

Dt
¼ ou

ot
þDx

Dt
ou

ox
ð17Þ
The system
ou

ot
þ oFðuÞ

ox
¼ 0 ð18Þ
can then be expressed in terms of the mobile operator as
Du

Dt
¼ Dx

Dt
ou

ox
� oFðuÞ

ox
ð19Þ
For a scalar equation the characteristic is defined by equating the right hand side of Eq. (19) to zero. In order
to define the best single characteristic of a system, the L2 norm
Du

Dt




2

¼ Dx
Dt

ou

ox
� oFðuÞ

ox




2

ð20Þ
of the total rate of change is instead minimized over Dx/Dt. This leads to the generalized wave velocity
Dx
Dt
¼ ou

ox
� oFðuÞ

ox

�
ou

ox
� ou

ox
ð21Þ
with orthogonality such that
Du

Dt
� ou

ox
¼ 0 ð22Þ
The generalized wave reduces to the exact characteristic for a scalar wave equation. The wave speed of Eq.
(21) has been shown to be approximately proportional to the dominant wave eigenvalue of the system [16].
This can be seen by invoking Eqs. (9) and (10) in (21) to yield
Dx
Dt
¼ ov

ox

T

RTRK
ov

ox

� ��
ov

ox

T

RTR
ov

ox

� �
ð23Þ
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which is therefore approximately proportional to the eigenvalue corresponding to the strongest wave strength
in characteristic gradient, and proves to be an optimal choice for a system when selecting a single wave speed.

6. Dominant wave scheme

The discrete dominant wave speed denoted here by kDW is naturally defined by
kDW ¼ ðuR � uLÞ � ðFR � FLÞð Þ=ððuR � uLÞ � ðuR � uLÞÞ ð24Þ

which is a function of differences between left and right states L and R, respectively. This definition is consis-
tent with Eq. (7), for a scalar equation this definition reduces to the discrete wave speed of Eq. (7) for any finite
jump in u. An immediate advantage of this definition of wave speed is the independence from a characteristic
decomposition. In addition to detecting the system dominant wave, in the limit this definition equates to the
exact shock speed for any wave type. This can be seen by employing the Rankine–Hugoniot shock jump
relationship [27]
ðFR � FLÞ ¼ rðuR � uLÞ ð25Þ

where r is the shock speed, substituting for the flux jump defined by Eq. (25) into Eq. (24) yields
kDW ¼ r ð26Þ

This is a further property that is not possessed by other definitions of artificial viscosity coefficients (other than
the Roe scheme), including the above Rusanov based schemes unless the Roe definition of eigenvalue is
employed and the shock corresponds with the maximum eigenvalue. The discrete dominant wave flux is
now defined by
fn
iþ1

2
¼ 1

2
F un

iþ1

	 

þ F un

i

	 

� jKDWj un

iþ1 � un
i

	 
	 

ð27Þ
where
jKDWj ¼ jkDWjI ð28Þ

and |kDW| is defined by Eq. (24). The dominant wave scheme is then defined be Eqs. (24), (27) and (11) and the
scheme is locally conservative by construction.
6.1. Stability and dominant wave bounds

Although formal stability of the dominant wave scheme cannot be proven the scheme may retain stability
whenever a particular wave dominates the system, due to the above observation that the dominant wave speed
is then approximately proportional to the corresponding dominant wave eigenvalue. In addition the wave
speed will adapt approximately to the local dominant wave of the flow in different regions of the flow field
as the solution evolves in time.

In cases where there is no dominant wave the scheme may require modification in the form of additional
viscosity. One option is to choose a convex average of the absolute dominant wave speed and absolute
maximum eigenvalue. In this section we consider how to modify the scheme such that consistency with the
formulation is maintained and avoid additional arbitrary artificial viscosity.

First we note that for a symmetric system Jacobian matrix, Eq. (24) reduces to
Dx
Dt
¼ ov

ox

T

K
ov

ox

� ��
ov

ox

T ov

ox

� �
ð29Þ
and in this case the dominant wave satisfies the inequalities
min
j

kj
6 kDW 6 max

j
kj ð30Þ
We note that if entropy variables are used Eq. (30) holds immediately. In this work our focus is on a conser-
vative variable formulation. Since we are interested in the modulus of wave speed when formulating the
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scheme (Eq. (27)), we use Eq. (30) to motivate the imposition of bounds on the discrete dominant wave speed
such that
min
j
jkjj 6 jkDWj 6 max

j
jkjj ð31Þ
The bounds of Eq. (31) ensure that the discrete dominant wave speed remains within the physical eigenvalue
limits. Indeed for the Euler equations the bounds applied here are
ju� aj 6 jkDWj 6 juþ aj ð32Þ

and are achieved by defining the bounded dominant wave speed |kDWB| via
jkDWBj ¼ minðmaxðju� aj; jkDWjÞ; juþ ajÞ ð33Þ

The practical effects of the bounds are discussed in Section 10, but some comments are appropriate here. An
important point is that the dominant wave scheme together with the bounds Eq. (32) in 1-D, (the 2-D form is
presented later in the paper) is found to perform successfully for all test cases presented. However, it is also
found that the bounds are not necessary for all test cases and when they are necessary it is observed that the
lower bound enhances stability, which is consistent with an increase in local viscosity compared to the dom-
inant wave. Therefore, the bounded dominant wave speed |kDWB| is defined by
jkDWBj ¼ maxðju� aj; jkDWjÞ ð34Þ

Further discussion is given in Section 10.

Finally we note that the definition of wave speed in Eq. (24) is singular unless there exists a non-zero
finite jump or difference between left and right states. Currently, in this event the maximum eigenvalue is
used. Numerical differentiation is a further possibility in such cases where Eq. (24) is singular and would
retain complete independence from a characteristic decomposition although this has not been used to
date.

7. Higher order schemes without upwinding in one dimension

In the scalar case a higher order approximation is applied to the conservation variable. When an upwind
scheme is applied to a system the higher order approximation is typically introduced wave by wave and
applied to the characteristic variables, followed by recomposition to the conservative variables. In contrast,
when using any of the discrete Rusanov based fluxes of Eqs. (14)–(16), respectively, or the dominant wave flux
defined by Eq. (27), the extension to higher order accuracy is simpler to achieve with the non-upwind formu-
lations when applied to systems, since there is no dependency upon characteristic variables in these definitions
of flux. Consequently, a higher order approximation can be introduced for the left and right states, respec-
tively, and be expressed directly in terms of the conservative variables. Alternatively the higher order expan-
sions can also be applied to other sets of variables such as primitive or characteristic variables. In this work the
conservative variables are used directly.

In one dimension the scheme is expressed as a two-step process. First the higher order states are defined
using a MUSCL formalism [20]. Higher order left and right hand side states are obtained by expansions about
the states L and R, viz:
uLiþ1
2
¼ ui þ

1

2
Uðrþiþ1=2Þðuiþ1 � uiÞ

uRiþ1
2
¼ uiþ1 �

1

2
Uðr�iþ1=2Þðuiþ1 � uiÞ

ð35Þ
where U rþiþ1=2

� �
and U r�iþ1=2

� �
are flux limiters, or in this case slope limiters [20]. The slope limiters are func-

tions of adjacent discrete gradients where rþiþ1=2 ¼ ðDui�1=2=Duiþ1=2Þ and r�iþ1=2 ¼ ðDuiþ3=2=Duiþ1=2Þ and Dui+1/2

= ui+1 � ui. The slope limiters constrain the expansions to ensure that the higher order data remains
monotonic in the scalar case. Details can be found in [20,21]. The above fluxes of Eqs. (14)–(16) and (27)
can now be applied to the higher order data so that a local generalized Riemann problem is resolved
(approximately) with a higher order flux of the form
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f iþ1
2
¼ 1

2
F un

R
iþ1

2

� �
þ F un

L
iþ1

2

� �� �
� jKdj un

R
iþ1

2

� un
L

iþ1
2

� �� �
ð36Þ
where Kd = KRUS, Kd = KLLF and Kd = KGLF correspond to the respective Rusanov based schemes of Eqs.
(14)–(16), respectively, and Kd = KDW corresponds to dominant wave scheme. Any of the fluxes can now
be used to integrate the system via Eq. (11). The higher order spatial scheme as defined by Eqs. (35), (36)
and (11), uses first order forward-Euler time stepping. The CFL condition of the scheme is dependent on
the choice of limiter, typically an upper limit of 1/2 is selected. Extension to higher order time accuracy
can be achieved with the second or third order Runge–Kutta schemes of [25] which preserve the spatial oper-
ator properties. The CFL limit reduces further in higher dimensions. Note that the first order flux is recovered
if the limiters are set to zero.

8. Approximate Riemann solvers without upwinding in two dimensions

In this section we describe the basic first order scheme. The higher dimensional extension of the above
scheme is based on a direct generalization of the one-dimensional discrete flux and described in Section 9.
The flow equations of Section 2 are integrated in space and time over a discrete control-volume X with surface
dX by direct use of the Gauss divergence theorem applied to yield a surface integral of divergence
Z

X
ðuðt þ DtÞ � uðtÞÞdV ¼ �

Z
Dt

Z
dX
ðFdy �GdxÞdt ð37Þ
Discrete cell vertex approximations are developed for general unstructured grids comprised of quadrilateral
and-or triangular cells. A control-volume is constructed around each grid vertex, by joining centres of cell
edges that connect to a given vertex, to centres of the cells that share the common vertex. This gives rise to
a polygonal control-volume surrounding each grid vertex, where each cell attached to the central vertex
contributes two sub-cell faces to the control-volume. We shall denote the ith vertex control-volume by
Xi and surface dXi. Referring to the typical control-volume shown in Fig. 1, two adjacent sub-cell faces
(labelled 1 and 2) are attached to each interior edge that connects to the central vertex i, while only one
sub-cell face is attached to a boundary edge. In this formulation the control-volume surface is defined with
respect to cell edges. The pth edge has one if a boundary, or two if interior, sub-cell faces with respect to
which the surface outward normal increments are defined. Consequently, control-volume surface increments
have double indices Dnp,j = (Dyp,j,�Dxp,j) where p and j (1 6 j 6 2) are the respective edge and sub-cell face
numbers.

Thus approximation of the surface integral of a flux function (F(u), G(u)) over the control-volume is defined
by
XNE

p¼1

XNS

j¼1

Fp;jðuÞjDnp;jj ¼
XNE

p

XNS

j¼1

ðFðuÞDyp;j �GðuÞDxp;jÞ ð38Þ
i

k

e
1

2

Fig. 1. Control-volume.
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where the inner summation is over sub-cell faces j associated with edge p and NS = 2 in the field and unity at a
boundary. The outer summation is over the NE control-volume edges connected to the central vertex i. The
normal jth sub-cell face flux of edge p is defined by
Fp;jðuÞ ¼
FðuÞDyp;j �GðuÞDxp;j

jDnp;jj
ð39Þ
As in one dimension the scheme is expressed as a two-step process: First discrete fluxes are defined on the
control-volume faces, which are assembled in an edge-wise fashion. In the case of the first order scheme
the first step simply involves selecting the left and right hand side states, which correspond to the left and right
hand side edge vertex values of the conservation variables. An appropriate numerical flux must now be
constructed.
8.1. Normally resolved Rusanov, LLF and GLF fluxes

In the case of the fluxes of Eqs. (13)–(16) their respective generalizations employ the directionally resolved
outward normal flux of Eq. (39) which replaces the one-dimensional flux evaluated at the respective left and
right hand states, so that edge based Riemann problems are resolved with the discrete generalized flux of the
form
fp;jðuR; uLÞ ¼
1

2
ðFp;jðuRÞ þFp;jðuLÞ � jKd p;jjðuR � uLÞÞ ð40Þ
Now it will be understood that f, F, Kd, n̂ each have the suffices p,j and they are omitted from the text. For the
Euler equations the Rusanov flux is now defined by Eq. (40) with
jKdj ¼ kRUS ¼ ðjq � n̂j þ aÞ ð41Þ

evaluated at the interval mid-point. The LLF flux is defined by Eq. (40) with
jKdj ¼ kLLF ¼ max
L;R
ðjq � n̂j þ aÞ ð42Þ
where the maximum eigenvalue is taken over the local grid interval. The GLF flux is defined by Eq. (40) with
jKdj ¼ kGLF ¼ max
Domain

ðjq � n̂j þ aÞ ð43Þ
where the maximum is taken over all grid intervals of the domain.

8.2. Normally resolved dominant wave flux

For the dominant wave scheme, the generalization of Eq. (27) is employed, again the directionally resolved
outward normal flux of Eq. (39) replaces the one-dimensional flux evaluated at the respective left and right
hand states. The dominant wave flux is defined by
fp;jðuR; uLÞ ¼
1

2
ðFp;jðuRÞ þFp;jðuLÞ � jKDWp;jjðuR � uLÞÞ ð44Þ
Again it is understood that f, F, KDW, n̂ bare the suffices p,j and they are omitted. The dominant wave speed is
defined by a generalized form of Eq. (24), obtained by using the normally resolved flux of Eq. (39) in (24) and
the speed is a function of left and right edge-vertex states with,
kDW ¼ ðuR � uLÞ � ðFðuRÞ �FðuLÞÞð Þ=ððuR � uLÞ � ðuR � uLÞÞ ð45Þ

as before KDW = kDWI. Note that this definition applies to any hyperbolic system. In two dimensions a bound-
ing procedure analogous to Eqs. (31) and (32) can be imposed. In particular for the Euler equations, the
bounds are defined such that
kq � n̂j � aj 6 jkDWj 6 kq � n̂j þ aj ð46Þ

As stated above current tests show that the lower bound is sufficient in all cases and is imposed such that
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jkDWBj ¼ maxðkq � n̂j � aj; jkDWjÞ ð47Þ

where now KDW = kDWBI in Eq. (44). Further details are given in Section 10.

8.3. Explicit first order scheme

The second step of the non-upwind scheme formulation involves formal time integration of the fully
discrete divergence of flux for each component of the system, which is shown below with forward-Euler time
integration. The discrete scheme for vertex i (control-volume area DAi) can then be written as
unþ1
i ¼ un

i �
Dt
DAi

XNE

p¼1

XNS

j¼1

fp;jðuR; uLÞjDnp;jj ð48Þ
where fp,j(uR,uL) is evaluated at time level n and is defined by Eq. (40) when using any of the schemes defined
via Eqs. (41)–(43), respectively, or Eqs. (44) and (47) for the dominant wave scheme. This completes the fun-
damental approximation of Eq. (37).

9. Higher order schemes without upwinding in two dimensions

Higher order states are based on a MUSCL formalism [20], where the above 1-D principle is extended to
two dimensions by constructing higher order data relative to each edge along which flux is to be defined. The
higher order left and right hand side states are obtained by expansions about the vertex locations at i and k,
Fig. 2. As in 1-D, using maximum principles for a scalar equation, the expansions are constrained with slope
limiters in order to prevent the higher order reconstruction from introducing spurious extrema. In this work
the reconstruction is performed with respect to the conservative variables. Referring to Fig. 2 the left and right
states uL and uR at the mid-point of the key edge e (joining vertices i and k) are expressed as
uL ¼ ui þ
1

2
UþDuki ð49Þ
where U+ is a function of
rþki ¼ ðDuim=DukiÞ ð50Þ

and
uR ¼ uk �
1

2
U�Duki ð51Þ
where U� is a function of
r�ki ¼ ðDupk=DukiÞ ð52Þ

where Duki = uk � ui is the edge difference of u. The differences Duim and Dupk are only well defined on a struc-
tured grid, where the locations of um, up would correspond to the next upstream and downstream nodes of the
i

k

e

1

4

2

3

m

p

Fig. 2. Higher order edge-based flux support (in bold).
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grid, respectively. Extension to unstructured grids requires special construction of the differences Duim and
Dupk.

Two types of definition are considered here for unstructured grids. The first is based directly on [22] with a
generalized central gradient defined at the vertex i by $ui. In this case the gradient of the function is resolved
along the direction of the edge and the upstream difference determined from the vertex gradient and edge dif-
ference assuming a locally resolved central difference relationship
Duim ¼ 2rui � drki � Duki ð53Þ

where drki is the edge e space vector with a similar definition for the downstream difference involving the edge
difference and gradient at vertex k. While this scheme proves to be quite effective, the scheme lacks formal
monotonicity and oscillations can occur in the vicinity of strong shocks, the scheme requires the addition
of a maximum–minimum constraints, e.g. as proposed by Barth and Jesperson [23]. Further possibilities
are presented in [24].

The second definition which is employed here involves a direct extrapolation of the respective upstream and
downstream higher order data which is constrained such that positivity holds for a scalar equation. The
upstream triangle i, 1,2 is labelled TU and the down stream triangle k, 3,4 is labelled TD. The space vector cor-
responding to edge e (drki) is extrapolated into the respective triangles TU, TD, see arrows in Fig. 2. This is
illustrated further with respect to vertex i. The edge vector is extrapolated to the point of intersection m,
on the opposite edge of the triangle TU, Fig. 2. The upwind difference is then obtained via the expansion
Duim ¼ ruT U
� drim ð54Þ
and for a linear approximation of u over the triangle TU the right hand side of Eq. (54) is equal to the convex
average of triangle edge differences with
Duim ¼ ð1� nÞDui1 þ nDui2 ð55Þ

where 1 � n P 0 and n is the (positive) ratio of area of sub-triangle i, 1,m to area of triangle TU. In order to
impose a maximum principle with respect to TU and edge e, the limiter U+ is defined so as to bound the higher
order gradient approximation by the minimum of the slopes on triangle edges i1 and i2 and slope of edge e.
The limiter is defined by
Uþ ¼ /ðrþkiÞ ð56Þ

where rþki is defined by Eq. (50) and /(r) is any standard slope limiter [20] and [21]. The higher order recon-
struction is then bounded between uk and um, by convexity (Eq. (55)) um = (1 � n)u1 + nu2, so that the bounds
are between the maximum and minimum of u over TU and edge e and the reconstruction reduces to first order
at two dimensional extrema.

In cases where coincidence or near coincidence is detected between the extrapolated edge and an upwind
triangle edge the limiting is collapsed to be entirely edge based. A similar convex average interpolant is con-
structed for vertex k using the right hand bold triangle together with analogous limiter bounds that now
depend on the edge slopes Du3k and Du4k. After the conservative variable reconstruction an additional test
on pressure variation is performed [28], if the local pressure variation is non-physical limiters are set to zero.
This completes the definition of the higher order states.

The second step involves selection of the numerical flux according to the chosen scheme and integration via
Eq. (48) with the higher order left and right states. In all cases the higher order data is first defined by Eqs.
(49), (51) and (54)–(56). The Rusanov based fluxes are defined by (40), together with Eq. (41), (42), or (43).
The dominant-wave flux is defined by Eqs. (44), (45) and (47). As in 1-D the Runge–Kutta schemes of [25]
can be used to complete the formal time accuracy of the scheme without disturbing spatial operator properties
subject to a CFL constraint, here 1/4 is used. These schemes are essentially local edge diminishing LED in
motivation [3,24], but applied to the data. As is typical of flux limited schemes, convergence to steady-state
is sensitive and limiting is then based on the van-Leer (smooth) limiter, where for positive r
/ðrÞ ¼ 2r
ð1þ rÞ ð57Þ
and / is zero otherwise. Note as before, that the first order flux is recovered if the limiters are set to zero.
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10. Results

10.1. One dimension

The schemes are first compared for the shock tube problem [26] (exact solution solid line, computed square
symbol, time = 0.25) with the prescribed initial data
ðq; u; pÞ ¼
1:0; 0:0; 1:0 x 6 0:5

0:125; 0:0; 0:1 x > 0:5

�
ð58Þ
The higher order scheme results for the Rusanov scheme and dominant wave scheme are shown in Figs. 3 and 4
using 50 nodes. The comparison is only shown for the least diffusive of the non-upwind schemes of Section 8.1,
i.e., Rusanov. The LLF scheme result is very close to Rusanov, the GLF result is slightly more diffuse. The com-
parison for density shows slightly more diffusion at the contact discontinuity computed by the Rusanov scheme,
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Fig. 3. Shock-tube 50 nodes: higher order Rusanov.

x

R
h

o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Shock-tube 50 nodes: higher order dominant-wave.
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which is inherent in the method Fig. 3, compared to the dominant wave scheme result (Fig. 4). Both schemes
show a significant improvement in resolution using 100 nodes Figs. 5 and 6, consistent with high resolution
scheme performance. In this case a 3-shock forms, corresponding to the maximum eigenvalue, so that the Rusa-
nov scheme is well suited to the problem. However, the dominant wave scheme still provides a slightly better
overall result due to the improvement in resolution in the region of the contact. The benefit of the dominant
wave scheme is particularly striking for the first order scheme comparison Figs. 7 and 8. The lower bound
on the dominant wave speed is found to be necessary, primarily in order to resolve the initial jump in data.

10.2. Two dimensions

Results are presented for two types of test case in two dimensions.
The first test is the well known transonic flow over a circular arc, with 10 percent radius, for details, see, e.g.

[5]. The initial free stream mach number is specified as 0.675. Subsonic inflow and outflow boundary condi-
tions apply. Data is prescribed according to the number of inward pointing characteristics. Density is updated
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Fig. 5. Shock-tube 100 nodes: higher order Rusanov.
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Fig. 6. Shock-tube 100 nodes: higher order dominant-wave.
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Fig. 7. Shock-tube 100 nodes: first order Rusanov.
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Fig. 8. Shock-tube 100 nodes: first order dominant-wave.
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on the inflow boundary (only one outward pointing characteristic) and the pressure is prescribed on the out-
flow boundary (only one inward pointing characteristic). A weak shock forms on the arc with the shock-foot
at 72 percent chord [5]. The triangular grid used for the computational comparisons is shown in Fig. 9. The
results are presented in the form of Mach number contours. As in the previous case comparison is only shown
between the least diffusive of the non-upwind (Rusanov) schemes and the dominant wave scheme. The higher
order Rusanov scheme results are shown in Fig. 10. The diffusive nature of the Rusanov scheme is clearly
apparent for this problem, where the weak 1-shock proves to be too weak for the scheme to detect its forma-
tion. The additional diffusion based on the largest eigenvalue is clearly inappropriate for such problems, which
are actually governed by the smallest eigenvalue of the system. The Rusanov contours only indicate a slight
asymmetry in the region of the shock, despite the use of a higher order scheme.

Dominant-wave scheme. In this case the lower bound on the dominant wave speed is found to be essential
for computing a stable solution. Moreover, experiments show that the dominant wave speed only requires the
lower bound in subsonic flow regions. This is achieved by using



Fig. 9. Channel: grid.

Fig. 10. Mach contours: higher order Rusanov.

Fig. 11. Mach contours: higher order dominant-wave.
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jkDWBj ¼
maxðjq � n̂� aj; jkDWjÞ M < 1

jkDWj M P 1

�
ð59Þ
where M is the local mach number. This condition can be reconciled intuitively since subsonic flow regions are
not necessarily dominated by a particular wave. The dominant-wave scheme results of Fig. 11 clearly demon-
strate that the new scheme is applicable to transonic flow and can detect the dominant (minimum) eigenvalue
in this case, resulting in capture of the shock over the mesh interval that straddles 72 percent chord.

The second case involves supersonic flow over a wedge with 20 degree angle. The initial free stream mach
number is specified as 3.0. Supersonic inflow and outflow boundary conditions apply with the vector u pre-
scribed on inflow boundaries and the solution vector updated on outflow boundaries. Zero normal flow
applies on the solid wall. The exact solution is comprised of a strong shock which forms at the corner of
the wedge at an angle of 37.5 degrees [27]. Quadrilateral and triangular grids are used for computational com-
parisons in this study and are shown in Figs. 12 and 13, respectively. The results are presented in the form of
density contours.
Fig. 12. Wedge: quadrilateral grid.



Fig. 13. Wedge: triangular grid.

290 M.G. Edwards / Journal of Computational Physics 218 (2006) 275–294
Quadrilateral results are considered first. The first order scheme comparison Figs. 14 and 15, shows the
additional diffusion present in the Rusanov scheme 14. The higher resolution comparison is given in Figs.
16 and 17, the higher order results are quite comparable, with slightly extra diffusion present in the Rusanov
result of 16.

The distinction between the schemes is seen to be greater in the case of the triangular grid. The first order
scheme comparison Figs. 18 and 19, clearly shows much additional diffusion present in the Rusanov scheme
18, compared to the first order dominant-wave scheme 19. The higher order GLF, LLF and Rusanov scheme
results are shown in Figs. 20–22, respectively. The three schemes are each able to resolve the shock in this
case, due to the stronger self sharpening nature of the shock. However, the diffusive nature of each scheme
is also quite apparent for this problem with some visible spreading of contours. The additional diffusion
inherent in these schemes is primarily due to using the modulus of the largest eigenvalue of the system to
govern stability of all wave components throughout the field. As expected, the GLF scheme Fig. 22 exhibits
the most diffusion due to employing the maximum system eigenvalue over the domain. The LLF scheme
result Fig. 23 is close to the Rusanov result Fig. 22, but still slightly more diffusive, due to maximizing over
Fig. 14. Density, quad-grid: first order Rusanov.

Fig. 15. Density, quad-grid: first order dominant-wave.



Fig. 17. Density, quad-grid: higher order dominant-wave.

Fig. 16. Density, quad-grid: higher order Rusanov.

Fig. 18. Density, tri-grid: first order Rusanov.

Fig. 19. Density, tri-grid: first order dominant-wave.
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the local interval. The higher order dominant-wave scheme result is shown in Fig. 23 and clearly demon-
strates an improvement in shock resolution for supersonic flow. This is due to the ability of the new scheme
to adjust towards the local dominant wave eigenvalue of the flow, resulting in capture of the shock with less



Fig. 20. Density, tri-grid: higher order global Lax–Friedrichs.

Fig. 21. Density, tri-grid: higher order local Lax–Friedrichs.

Fig. 22. Density, tri-grid: higher order Rusanov.

Fig. 23. Density, tri-grid: higher order dominant-wave.
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numerical diffusion. The centre line of the band of contours is in line with the exact solution. In this case the
dominant-wave scheme works equally well with or without eigenvalue bounds, with no discernable difference
found in results.
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11. Conclusions

This paper presents a new dominant wave capturing formulation for hyperbolic conservation laws. The
method is constructed via a new flux so that local conservation is maintained and is developed within a general
finite volume framework. Low order and higher order versions of the method are presented on structured and
unstructured grids.

The dominant wave scheme bounded below by the modulus of the smallest eigenvalue of the system per-
forms successfully for all test cases presented and is therefore presented as the current practical version of the
method. However tests also show that the bounds are not necessary for all cases.

Comparisons between the new method and the Rusanov, LLF and GLF based schemes reveal clear advan-
tages of the new dominant wave formulation in terms of front resolution.

The schemes are applied to the Euler equations of compressible flow. Results are shown for some classical
flow problems. The Rusanov based schemes can either fail to detect discontinuities that are known to be pres-
ent in the physical solution, or introduce larger amounts of numerical diffusion. In contrast, the new dominant
wave scheme is able to capture the discontinuities while using exactly the same grids and equivalent levels of
accuracy in terms of polynomial approximation.

The results presented demonstrate the benefits of the dominant wave formulation, and show that improved
resolution can be obtained compared to the Rusanov formulation while retaining stability, producing essen-
tially non-oscillatory solutions and continuing to circumvent the need for a characteristic decomposition
schemes. The improvement is attributed to the ability of the new scheme to detect the crucial dominant wave
eigenvalue of the system and thereby reduce the global numerical diffusion that is added by the Rusanov
schemes dependence on the maximum system eigenvalue.

The new flux formulation will be tested with other approximations such as discontinuous Galerkin and
ENO in future work. Finally it is noted that the dominant wave formulation offers the potential benefits of
being directly applicable to other systems of hyperbolic conservation laws without requiring a characteristic
decomposition.
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